
Course Project Report

Introduction to Processor Architecture

Design and Implementation of a 64-bit RISC-V Processor

Abstract:

This report describes the design and implementation of a 64-bit RISC-V processor with pipeline
and hazard detection. The processor is implemented in Verilog and can execute a subset of the
RISC-V instruction set. The processor is pipelined to improve performance, and it includes
hazard detection logic to prevent data hazards and control hazards. The processor is also
equipped with a branch predictor to reduce the performance impact of control hazards.

Submitted by:

Hrishikesh Milind Gawas Vignesh Vembar Krish Pandya
2024122006 2023102019 2023102026

Academic Year: 2024 - 2025

IPA Course Project 64-bit RISC V Processor

Contents

1 Sequential CPU Design 2
1.1 Overview . 2
1.2 Working of the CPU . 2
1.3 Assembler . 3

1.3.1 Introduction . 3
1.3.2 Assembler Overview . 4
1.3.3 Testbench Generation . 4

1.4 Simulation . 5
1.5 Visualisation . 7

2 Pipelined CPU Design Documentation 8
2.1 Overview . 8
2.2 Pipeline Register Implementation . 9
2.3 Architectural Rationale and Implementation Details 9

2.3.1 Pipeline Register Design Strategy . 9
2.3.2 Control Signal Propagation . 10
2.3.3 Data Hazard Resolution System . 10
2.3.4 Branch Prediction Implementation . 10
2.3.5 Forwarding Implementation . 12

2.4 Critical Design Tradeoffs . 12
2.5 Key Implementation Nuances . 12

2.5.1 Instruction Injection Protocol . 12
2.5.2 Stall State Tracking . 13
2.5.3 End-of-Program Detection . 13

2.6 Architectural Validation Points . 13
2.7 Simulation . 13

2.7.1 Case I: Loop with Data Dependencies . 13
2.7.2 Case II: Branch Prediction Testing . 14
2.7.3 Case III: Branch Misprediction Recovery . 15
2.7.4 Case IV: Load-Use Hazard Resolution . 16
2.7.5 Case V: Data Forwarding Validation . 17
2.7.6 Case VI: Control Hazard Complex Case . 18

3 Contribution and Conclusion 19

1

IPA Course Project 64-bit RISC V Processor

1 Sequential CPU Design

1.1 Overview

The cpu sequential module is the final wrapper module which features a basic 64-bit RISC-V
processor designed to execute instructions sequentially. It includes key components such as the
program counter (PC), instruction memory, control unit, register file, ALU, and data
memory, which work together to execute instructions in a step-by-step manner.

1.2 Working of the CPU

The CPU follows the standard instruction execution cycle, which consists of the following
stages:

• Instruction Fetch

• Instruction Decode

• Execute

• Memory Access

• Write-back

1. Instruction Fetch

• Features a 64-bit program counter which holds the address of the current instruction. This
updates at every positive clock edge to point to the next instruction or branch target.

• Features separate memory for instruction and data storage. This prevents data hazards,
discussed in later sections.

• Fetches the instruction from the instruction memory using the pc current value.

2. Instruction Decode

• Features control unit which decodes the instruction and generates control signals. These
determine the type of operation such as memory operations, arithmetic operations, and
branch execution.

• Features a register bank which provides data stores on two source registers (rs1 and rs2).
This unit also writes the computed result to the destination register (rd).

Figure 1.1: Control Signals

3. Execute

• Features ALU (Arithmetic Logic Unit) which performs arithmetic and logical operations.
It takes two inputs reg read data1 (First operand) and alu operand2 (Second operand -
register or immediate value) and produces alu result and the zero flag (useful for branch
instruction beq).

2

IPA Course Project 64-bit RISC V Processor

• This processor supports a subset of RISC-V instructions:

– R-type: add, sub, or, and

– I-type: addi, ld (load doubleword)

– S-type: sd (store doubleword)

– SB-type: beq (branch if equal)

– Special: nop (no operation)

• If a branch instruction is executed, the zero flag determines whether to take the branch. The
new PC address is calculated and provided to the multiplexer before pc next. If no branch
is taken, the PC increments sequentially (PC+4).

4. Memory Access

• Load instructions (ld) fetch data from data memory and Store instructions (sd) write data
to memory.

5. Write-back

• The final result is written back to the register file. The value comes from either memory or
the ALU result which is set using the mem to reg control signal.

Figure 1.2: Sequential Datapath and Control Logic

1.3 Assembler

1.3.1 Introduction

An assembler is a program that translates assembly language instructions into machine code (bi-
nary format). The assembler processes RISC-V assembly instructions and generates corresponding
binary instructions to be loaded into the instruction memory of the CPU.

3

IPA Course Project 64-bit RISC V Processor

1.3.2 Assembler Overview

The assembler operates in two passes:

1. First Pass: Label Collection

• Reads the assembly file and scans for labels (used in branching instructions).

• Assigns memory addresses to labels so they can be referenced later.

2. Second Pass: Instruction Translation

• Converts each assembly instruction into its binary format based on the RISC-V instruc-
tion set.

• Uses predefined opcode, function codes (funct3, funct7), and register encoding.

• Replaces label references with corresponding memory addresses.

The output of this assembler is a list of binary instructions formatted in Verilog format, which
is then inserted into the testbench.

1.3.3 Testbench Generation

The assembler generates a testbench in Verilog to verify the correctness of the cpu sequential

module. The testbench:

• Initializes a clock signal (clk) with a 10ns period.

• Generates a reset signal at the beginning to initialize the CPU.

• Loads the generated machine instructions into the instruction memory (imem).

• Simulates execution by stepping through the instruction cycle. The simulation runs until the
CPU encounters an all zero bit NOP (halt) instruction.

• Monitors CPU behavior, registers, and memory operations at every cycle which can be viewed
on terminal as shown below.

Figure 1.3: Cycle wise monitoring

• After execution, the testbench prints the final values of registers and memory. It also
writes memory contents to a file (data memory.hex).

• This measures the execution time of the program in cycles.

Finally, a bash script is written which integrates all files such as assembler, testbench generated
and all the modules to simulate the results in one go!

4

IPA Course Project 64-bit RISC V Processor

1.4 Simulation

Case I

Initially, a basic assembly sketch is implemented to test whether all functions work properly.

Figure 1.4: Basic Assembly

Figure 1.5: GTKWave Output

Case II

Some lengthy test cases were run to check edge cases.

5

IPA Course Project 64-bit RISC V Processor

Figure 1.6: nth Fibonacci number

Figure 1.7: Final Instruction Output

6

IPA Course Project 64-bit RISC V Processor

Figure 1.8: nth Factorial

Figure 1.9: Final Register Content (x11)

1.5 Visualisation

To enhance understanding of the CPU’s operation, we developed a visualization tool that renders
the processor’s architectural components and data flow in real time. This interactive interface
depicts the key components of the CPU including the register file, ALU, memory units, and control
paths, allowing observation of instruction execution at each stage. Our visualization approach
provides intuitive insights into the processor’s behavior by highlighting active data paths and
changing register values during program execution, making it especially valuable for debugging
and educational purposes.

7

IPA Course Project 64-bit RISC V Processor

Figure 1.10: RISC-V CPU Interactive Visualization Interface

2 Pipelined CPU Design Documentation

2.1 Overview

This 5-stage pipelined RISC-V CPU implements a RISC-V subset with hazard handling and branch
prediction. Key components are organized into Instruction Fetch (IF), Decode (ID), Execute (EX),
Memory Access (MEM), and Write-Back (WB) stages connected through pipeline registers. This
design is largely based on principles and architectures described in Harris and Harris [2012] and
Patterson and Hennessy [2020]. The control sequence was designed keeping in mind the standard
5-stage pipeline operation.

Figure 2.1: 5-Stage Pipeline Architecture with Forwarding Paths

8

IPA Course Project 64-bit RISC V Processor

2.2 Pipeline Register Implementation

Four pipeline registers manage intermediate results between stages which are:

• IF/ID Register: Stores PC value and fetched instruction

Inserts NOPs during stalls/flushes. The enable signal en controls the register update, active
when not stalled or during branch prediction, and also if stalled in the last cycle to ensure
forward progress after a stall (this has to be done for load hazard) .

• ID/EX Register: Preserves control signals and decoded operands

This register captures the decoded instruction information and control signals, forwarding
them to the EX stage. The enable signal en is similar to IF/ID, ensuring data is held during
stalls but progresses otherwise .

• EX/MEM Register: Carries ALU results and memory addresses

This register stores the results from the EX stage, such as ALU results, data for memory
operations, and control flags, for use in the MEM stage. It is always enabled (en is 1’b1) as
it needs to pass data every cycle when the pipeline is not flushed by reset. (Why enable
always you might ask? Because we need to pass the data every cycle and we don’t want to
stop the data flow in the pipeline and in our design choice we decided to pass (addi x0 x0 0)
which is actually the instruction that RISC-V Uses.)

Figure 2.2: Stalling Instruction in RISC-V

• MEM/WB Register: Holds data for write-back operations

This register carries data from the MEM stage to the WB stage, including memory read data
and ALU results, for the final write-back to the register file. Similar to EX/MEM, it’s also
always enabled to ensure data progresses in the pipeline.

2.3 Architectural Rationale and Implementation Details

2.3.1 Pipeline Register Design Strategy

• Naming Convention: Registers named <stage1> <stage2> register indicate inter-stage
boundaries (e.g., IF/ID separates Fetch/Decode)

• Data Preservation: Each register stores complete stage output:

1 // EX/MEM register contents

2 input [63:0] id_ex_pc , alu_result , operandB , branch_target;

3 input [31:0] id_ex_instruction;

4 input id_ex_zero , id_ex_branch , id_ex_mem_read , ... ;

As illustrated, the ex mem register module (and similarly for others) bundles all necessary
outputs from the EX stage needed by subsequent stages. This includes the program counter,
ALU result, operand B, branch target, instruction itself, zero flag, and control signals related
to branch, memory read/write, memory to register transfer and register write operations.

• Flush/Stall Handling: Reset or inject NOPs during control hazards. The reset and flush

inputs are used to clear pipeline registers during control hazards or at system reset. For data
hazards, specifically load-use hazards, NOP instructions are injected into the pipeline to
create a stall cycle, as evident in the IF/ID register instantiation:

9

IPA Course Project 64-bit RISC V Processor

1 wire [31:0] instr_to_use = flush ? 32’h00000013 : instruction; // NOP

when flush

2 if_id_register if_id(

3 // ...

4 .d({

5 pc_current ,

6 stall & ~stalled_last_cycle ? 32’ h00000013 : instr_to_use ,

7 stall & ~stalled_last_cycle ? 1’b1 : nop_instruction ,

8 branch_predicted ,

9 predicted_pc

10 }),

11 // ...

12);

Here, when a stall condition is detected and it’s not a continued stall from the last cycle, a
NOP instruction (32’h00000013, which is addi x0, x0, 0) is inserted into the IF/ID pipeline
register. As discussed before in 2.2, this instruction is used to stall the pipeline for one cycle
to resolve load-use hazards.

2.3.2 Control Signal Propagation

• Stage-Specific Generation: Control signals originate in ID stage. The control unit

module is instantiated in the ID stage and generates control signals based on the decoded
instruction from the IF/ID register:

1 control_unit ctrl(

2 .instruction(if_id_instruction),

3 .branch(branch),

4 .mem_read(mem_read),

5 .mem_to_reg(mem_to_reg),

6 .mem_write(mem_write),

7 .alu_src(alu_src),

8 .reg_write(reg_write)

9);

• Pipeline Carry-Through: Signals propagate with instruction flow. The control signals
generated in the ID stage, such as branch, mem read, mem write, mem to reg, reg write,
and alu src, are then passed into the ID/EX pipeline register:

1 id_ex_register id_ex (.d({..., branch , mem_read , ...}));

These control signals then move down the pipeline with the instruction, being registered in
subsequent pipeline registers (EX/MEM, MEM/WB if needed for later stages).

2.3.3 Data Hazard Resolution System

Table 2.1: Hazard Handling Mechanisms
Hazard Type Detection Method Resolution
Load-Use ID stage register dependency check 1-cycle stall
Data Hazards (EX MEM) Forwarding logic in EX stage Forwarding
Control Branch misprediction in EX stage Pipeline flush

2.3.4 Branch Prediction Implementation

• Static Prediction: Our processor implements a simple static branch prediction strategy.

1 assign branch_predicted = is_branch;

This line implements an ”always-taken” prediction policy. When an instruction is identified
as a branch (by checking if its opcode matches the RISC-V branch opcode 7’b1100011), we
predict it will be taken. This detection happens early in the Instruction Fetch stage:

10

IPA Course Project 64-bit RISC V Processor

1 wire is_branch = (instruction [6:0] == 7’b1100011);

• Target Calculation: For predicted-taken branches, we calculate the target address imme-
diately:

1 wire [63:0] if_branch_target = pc_current + if_branch_offset;

This calculation occurs during the IF stage, allowing us to redirect the PC without waiting for
later stages. The branch offset is extracted and sign-extended from the instruction according
to the RISC-V B-type format:

Figure 2.3: Branch Offset Calculation

• Misprediction Recovery:

1 assign flush = branch_mispredicted & ~id_ex_branch_predicted;

This critical line determines when to flush the pipeline after a branch misprediction.

– branch mispredicted indicates that the actual branch outcome (determined in EX
stage) differs from what was predicted

– ~id ex branch predicted means the branch was predicted as NOT taken

The combination branch mispredicted & ~id ex branch predicted means: ”We have a
misprediction AND the branch was predicted NOT taken but should have been taken.” This
specific condition matters because:

1. If we predicted a branch as taken but it shouldn’t be , we’ve fetched instructions from
the wrong path (honestly our skill issue), but we only need to redirect the PC without
flushing.

2. If we predicted a branch as NOT taken but it should be , we’ve already started executing
instructions after the branch that should never execute!!, so we must flush these from
the pipeline. THIS IS NUCLEAR and we do it with flush remember from pipeline
registers we mentioned we have flush going on all of them hahahahah it gets used now.
Indeed Beautiful.

When the flush signal is asserted, it resets the IF/ID and ID/EX pipeline registers, effec-
tively discarding any incorrectly fetched instructions and allowing execution to continue from
the correct path.

11

IPA Course Project 64-bit RISC V Processor

2.3.5 Forwarding Implementation

1 // EX hazard (ALU result not yet written)

2 if (ex_mem_reg_write && ex_mem_rd != 0 && ex_mem_rd == id_ex_rs1 && !

ex_mem_mem_to_reg)

3 forwardA = 2’b10;

4 // MEM hazard (completed execution)

5 if (mem_wb_reg_write && mem_wb_rd != 0 && mem_wb_rd == id_ex_rs1)

6 forwardA = 2’b01;

This Verilog snippet illustrates the forwarding logic for operand A in the EX stage. It checks for
RAW hazards by comparing the destination register (ex mem rd, mem wb rd) of instructions in the
EX/MEM and MEM/WB stages with the source register (id ex rs1) of the instruction in the EX
stage.

• EX Hazard Forwarding (2’b10): If there’s a match with the EX/MEM stage’s destination
register and it’s not a load instruction (indicated by !ex mem mem to reg), forward from the
EX/MEM ALU result. The condition ex mem rd != 0 ensures that we don’t forward if the
destination register is x0.

• MEM Hazard Forwarding (2’b01): If there’s a match with the MEM/WB stage’s desti-
nation register, forward from the MEM/WB stage’s result. This could be either from memory
(mem wb mem read data if mem wb mem to reg is true) or ALU result. This forwarding path
takes precedence over the EX hazard forwarding, ensuring the most up-to-date data is used,
especially after a load-use stall is resolved.

• No Forwarding (default 2’b00): If none of the forwarding conditions are met, operand
A is read from the register file (id ex reg read data1).

Literally the same logic is implemented for operand B using forwardB.

2.4 Critical Design Tradeoffs

• Branch Prediction Simplicity vs Accuracy: Static always-taken reduces complexity
but may increase mispredictions. The choice of always-taken branch prediction is a trade-off
favoring hardware simplicity over prediction accuracy. We will further continue to improve
this project and add a better branch prediction.

• Forwarding Complexity vs Performance: Full forwarding network eliminates stalls for
Data hazards (except load-use) but increases logic complexity. Implementing a full forwarding
network adds complexity to the EX stage and control logic (which we admit was a skill
issue could have implemented a full fledged forwarding network). However, it significantly
reduces pipeline stalls due to Data hazards as well, improving overall performance by allowing
dependent instructions to proceed without waiting for write-back.

• Stall Mechanism vs Throughput: Single-cycle load stalls balance pipeline depth with
hazard frequency. Introducing a single-cycle stall for load-use hazards is a compromise. It
simplifies the hazard detection and resolution logic but may slightly reduce throughput com-
pared to more complex hazard avoidance techniques like load bypassing or more sophisticated
stall mechanisms. We looked into those but couldn’t implement.

2.5 Key Implementation Nuances

2.5.1 Instruction Injection Protocol

1 // NOP insertion during flush/stall

2 wire [31:0] instr_to_use = flush ? 32’h00000013 : instruction;

3 if_id_register if_id (.d({..., stall ? 32’h00000013 : instr_to_use , ...}));

To handle pipeline flushes (due to branch mispredictions) and stalls (due to load-use hazards), NOP
(No Operation) instructions are injected into the pipeline. The code shows that during a flush
or stall, the instr to use signal is assigned the NOP instruction (32’h00000013, which is addi

x0 x0 0). This NOP instruction as discussed in Figure 2.2 is then fed into the IF/ID register,
effectively bubbling through the pipeline and ensuring no unintended operations are performed
during hazard resolution.

12

IPA Course Project 64-bit RISC V Processor

2.5.2 Stall State Tracking

1 reg stalled_last_cycle;

2 always @(posedge clk) stalled_last_cycle <= stall;

A register stalled last cycle is used to track if a stall occurred in the previous clock cycle. This
is crucial for the stall mechanism to work correctly for load-use hazards. When a load-use hazard
is detected (indicated by the stall signal), the pipeline stalls for one cycle. In the next cycle,
even if the hazard condition is still theoretically present (though now resolved by the stall cycle),
the pipeline must proceed. The stalled last cycle flag ensures that the stall is only for one
cycle, allowing the pipeline to resume in the subsequent cycle, as reflected in the enable condition
of pipeline registers like IF/ID and ID/EX: .en(stall | stalled last cycle).

2.5.3 End-of-Program Detection

1 assign end_program = mem_wb_nop_instruction &

2 ~branch_mispredicted &

3 ~branch_predicted;

The end program signal is asserted to indicate the program’s termination. It is designed to detect
when a NOP instruction reaches the Write-Back stage (mem wb nop instruction) and there are
no ongoing branch mispredictions or predictions (branch mispredicted & ~branch predicted).
This condition ensures that the program is considered finished only after all instructions, including
any NOPs injected due to stalls or flushes, have completed the pipeline and there are no pending
control flow changes from branch handling.

2.6 Architectural Validation Points

• Forwarding Path Verification: Validation of all EX/MEM and MEM/WB bypass sce-
narios confirms the correct data flow and hazard resolution through forwarding.

• Branch Recovery Sequence: Testing the flush signal timing and PC correction ensures
that mispredicted branches are correctly handled, and the pipeline recovers to the correct
execution path.

• Load-Use Hazard Handling: Verification of single-cycle stall insertion confirms that load-
use hazards are detected and resolved by stalling the pipeline appropriately, preventing in-
correct data usage.

• Control Signal Propagation: Checking signal integrity through pipeline stages validates
that control signals are accurately generated in the ID stage and correctly propagated through
subsequent pipeline registers, maintaining control over instruction execution throughout the
pipeline.

• Memory Alignment: Validation of 64-bit data access boundaries ensures that memory
operations are correctly aligned, which is critical for data integrity in a 64-bit architecture.

2.7 Simulation

To validate our pipelined CPU design, we performed extensive testing using a variety of assembly
programs. Each test case was designed to verify specific aspects of pipeline functionality, including
hazard handling, forwarding, and branch prediction. Ofcourse the Assembler was the same as
sequential.

2.7.1 Case I: Loop with Data Dependencies

Our first test case exercised both branch prediction and data forwarding capabilities:

1 begin:

2 addi x1, x0, 3 # x1 = 3

3 addi x2, x0, 7 # x2 = 7

4

5 loop:

6 beq x1 , x0 , exit # if x1==0, end program

13

IPA Course Project 64-bit RISC V Processor

7 add x2 , x2 , x1 # x2 = x1 + x2

8 addi x1, x1, -1 # x1--

9 beq x0 , x0 , loop # loop

10

11 exit:

12 nop

It validates:

• Register forwarding for the add x2, x2, x1 instruction which uses updated x1 values

• Branch prediction for both conditional and unconditional branches

• Control hazard handling when the branch to exit is finally taken

Check how the final value in x2 is 13 as expected.

Figure 2.4: Loop with Data Dependencies - Pipeline Execution

2.7.2 Case II: Branch Prediction Testing

A very simple branch testing:

1 begin:

2 beq x0 , x0 , L1

3 addi x6, x0, 3

4

5 L1:

6 addi x5, x0, 4

7

8 end:

9 nop

This program includes an always-taken branch at the beginning that skips an instruction. It
tests:

• Early branch detection in the IF stage

• Static ”always-taken” prediction implementation check

• Correct execution path after branch prediction

14

IPA Course Project 64-bit RISC V Processor

See how x5 is 4 as expected.

Figure 2.5: Branch Prediction Test - Pipeline Execution

2.7.3 Case III: Branch Misprediction Recovery

Our third test examines pipeline recovery after branch mispredictions:

1 begin:

2 beq x0 , x0 , end

3

4 L1:

5 addi x5, x0, 4

6

7 L2:

8 addi x6, x0, 4

9

10 L3:

11 addi x7, x0, 4

12

13 end:

14 nop

This code challenges the pipeline (literally challenged me bro this stuff wasn’t working lmao)
with multiple branch targets and validates:

• Pipeline flush operation when branches are mispredicted

• NOP insertion during recovery

• PC redirection to the correct execution path

• As expected the output shows everything is 0.

15

IPA Course Project 64-bit RISC V Processor

Figure 2.6: Branch Misprediction Recovery Test

2.7.4 Case IV: Load-Use Hazard Resolution

Tests the Load Hazard:

1 begin:

2 ld x2 , 0(x0)

3 addi x4, x2, 1

4 add x8 , x6 , x2

5 add x9 , x4 , x2

6

7 end:

8 nop

This code creates a classic load-use hazard where the value loaded into x2 is immediately needed
by the next instruction. It confirms:

• Accurate detection of load-use dependencies

• Proper insertion of a single-cycle stall

• Correct resumption of pipeline flow after stall resolution

As you can see x0 was loaded with 5 before hand to see this output:

16

IPA Course Project 64-bit RISC V Processor

Figure 2.7: Load-Use Hazard Resolution Test

2.7.5 Case V: Data Forwarding Validation

Double Forwarding Test:

1 begin:

2 addi x1, x0, 5

3 addi x2, x1, 1

4 add x3 , x0 , x1

5 addi x4, x1, 1

6

7 end:

8 nop

The program creates multiple data dependencies in quick succession, ensuring that:

• EX-to-EX forwarding works correctly for the result of addi x1, x0, 5

• MEM-to-EX forwarding functions for later uses of x1

• Forwarding logic properly prioritizes the most recent value as seen by output:

17

IPA Course Project 64-bit RISC V Processor

Figure 2.8: Data Forwarding Validation Test

2.7.6 Case VI: Control Hazard Complex Case

ok last test combines branch prediction with data dependencies:

1 begin:

2 beq x0 , x0 , L1

3 addi x7, x0, 4

4 addi x8, x0, 5

5 addi x9, x0, 6

6 addi x10 , x0, 10

7

8 L1:

9 addi x5, x0, 4

10 addi x6, x0, 5

11

12 end:

13 nop

This test validates:

• Branch target calculation in the presence of multiple potential paths

• Instruction squashing after branch resolution

• Resumption of correct execution sequence

18

IPA Course Project 64-bit RISC V Processor

Figure 2.9: Control Hazard Complex Test

These tests confirm that our pipelined CPU correctly handles the key challenges of pipelined
execution: data hazards through forwarding and stalling, and control hazards through prediction
and recovery mechanisms.

3 Contribution and Conclusion

Well mostly it wasn’t a 1/3 split but it was a 9/3 team effort, Hrishikesh worked on report writing
, basic structure of Pipelining, desining registers and stuff along with creating beautiful test cases
that we have right now , Vignesh the goat made the assembler and ALU , fixed a lot of bugs
that we found out on the later stages of testing on even his amazing test cases , he handled the
sequential fixes along with Hrishikesh the Data Hazards in pipelining, and for Krish, I finished
(which I am writing right now) this last parts of report writing and all the hazards in pipelining
along with web view, made the integration for Sequential and all the initial design blocks.

All in all it was more of a team effort so contributing any part to a person feels unjust as all of
us worked on almost everything. We would also like to thank Prof Deepak Gangadharan and all
the TAs for this amazing of a course, this was really a fun project to work on and we learnt a lot!

We will further work on this on our free time and extend the ISA as much as possible along
with better hazard handling strategies that we will come up with.

Concluding here by saying that our implementation was sophisticated and aligned with the
project’s best requirements. Hazard handling was graceful, testing will be smoother due to the
assembler, and the provided README would make the job much easier. The sequential design
had really big programs running while maintaining speed. Future work includes extending the ISA
and improving hazard handling strategies.

Adios!! Thanks for Reading

References

D. Harris and S. Harris. Digital Design and Computer Architecture. Morgan Kaufmann, 2012.

D. A. Patterson and J. L. Hennessy. Computer Organization and Design RISC-V Edition. Morgan
Kaufmann, 2020.

19

	Sequential CPU Design
	Overview
	Working of the CPU
	Assembler
	Introduction
	Assembler Overview
	Testbench Generation

	Simulation
	Visualisation

	Pipelined CPU Design Documentation
	Overview
	Pipeline Register Implementation
	Architectural Rationale and Implementation Details
	Pipeline Register Design Strategy
	Control Signal Propagation
	Data Hazard Resolution System
	Branch Prediction Implementation
	Forwarding Implementation

	Critical Design Tradeoffs
	Key Implementation Nuances
	Instruction Injection Protocol
	Stall State Tracking
	End-of-Program Detection

	Architectural Validation Points
	Simulation
	Case I: Loop with Data Dependencies
	Case II: Branch Prediction Testing
	Case III: Branch Misprediction Recovery
	Case IV: Load-Use Hazard Resolution
	Case V: Data Forwarding Validation
	Case VI: Control Hazard Complex Case

	Contribution and Conclusion

